KRISHNA ESTUARY – ECOLOGY AND FISHERIES

Central Inland Fisheries Research Institute (Indian Council of Agricultural Research) Barrackpore, Kolkata - 700120, West Bengal

KRISHNA ESTUARY – ECOLOGY AND FISHERIES

N. P. Shrivastava B.C. Jha D. Nath H.C. Karmakar

Bull. No. 158

2009

Central Inland Fisheries Research Institute (Indian Council of Agricultural Research) Barrackpore, Kolkata – 700 120, West Bengal Krishna estuary - Ecology and fisheries

ISSN 0970-616 X

© 2009

Material contained in this Bulletin may not be reproduced, in any form, without the permission of the publisher

Published by: The Director, CIFRI, Barrackpore

Printed at : Eastern Printing Processor 93, Dakshindari Road Kolkata - 700 048

FOREWORD

Estuaries are highly dynamic ecosystems, supporting diverse habitats with distinctly diverse biotic communities. In recent times, however, these systems have been subjected to various stress factors, primarily arising out of river valley modifications, which in turn have created imbalances at various levels of utility functions, including the fisheries. Loss of ecological services, including the fishery and biodiversity, has become the hallmark of the estuarine ecosystems in the country. The estuaries are the extremely exploited ecosystems, being intimately associated with the mankind, throughout the globe. It is imperative, therefore, to develop suitable protocols for the effective management of fisheries besides the conservation of biodiversity. To ensure this, generation of time series data is essential so that location specific effective management protocols based on scientific principles are in place.

Krishna estuary, Andhra Pradesh, in the east coast of India, is one of the finest estuarine systems of the country, supporting the livelihood concerns of thousands of traditional fishers. In recent years the system has been degraded due to increased anthropogenic interferences, like the construction of Prakasam barrage near Vijaywada. The resultant impact has been dismal discharge of freshwater into the system. The Krishna has almost converted into a tide-fed estuary, affecting the ecological integrity and biodiversity, adversely.

In the backdrop of such a development and dearth of authentic information on the ecology and fisheries of Krishna estuary, especially during the changed ecological regimes, the Central Inland Fisheries Research Institute, Barrackpore, undertook a detailed investigation to generate baseline information on various facets of ecology besides understanding the present state-of-art on fishery and biodiversity, during 2005-07. I am sure the information generated during the course of the present investigation and the recommendations suggested in the text will be highly beneficial to the concerned agencies in the effective management of its fishery and conservation of precious biodiversity.

I wish to put on record my sincere thank to the officials of the department of fisheries, Govt. of Andhra Pradesh for their cooperation during the course of the present investigation. I also appreciate the good work done by the CIFRI team for generating valuable information from Krishna estuary, which was hitherto highly scanty.

Place: Barrackpore Date: November, 2008 K. K. Vass Director

ACKNOWLEDGEMENT

The authors are grateful to Dr. K. K. Vass, Director CIFRI for providing all facilities and for suggesting improvements in the present report. Thanks are also due to Smt. K. Jacquline and Shri K. F. Singh for providing technical assistance in the project's works.

PARTICIPANTS

Shri R. N. Misra, Principal Scientist & HoD

Dr. M. K. Mukhopadhyay, Principal Scientist & HoD (Up to March 2007)

(From March 07 till completion of project)

Shri N. P. Shrivastava, Principal Scientist & P.I.

Dr. D. Nath, Principal Scientist

Dr. B. C. Jha, Principal Scientist

Shri H.C. Karmakar, Principal Scientist (Entire period)

(Entire period)

(Entire period)

(Entire period)

TECHNICAL/ LAB AND FIELD ASSISTANCE

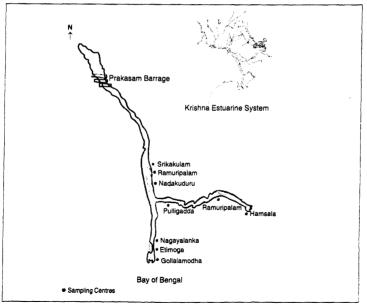
Smt. Abhijita Sengupta, T-5 Shri B. N. Das, T-4 Shri A. Roy Chowdhury, T-3 Shri S. Mondal, T-2 Shri A. Das, SSG II

Contents

1.	Introduction		ĭ
2.	Physical Feature of the Krishna River Estuary	•••	2
3.	Ecology of Krishna Estuary	•••	3
4.	Biotic Production		9
5.	Fish and Fisheries		11
6.	Recruitment of Fish Seed		13
7.	Biology of commercially Important Fish Species		14
8.	Salient Findings		ы
9.	Broad Recommendations		;7
10.	Reference		•

INTRODUCTION

The peninsular India is highly rich in estuarine resources with a number of major and minor estuaries, as well as estuarine waters, contributing to the inland fish catch sizably. Krishna estuary (latitude 16^{902} / N; longitude 80° 53′ E), Andhra Pradesh with an area of 320 km² is an important mesotidal estuary with a tidal amplitude of 2-3 m. Nadimeru, Golumuttapaya and Hamsaladevipaya are the three tributaries debouch into it, making the system highly rich in biodiversity and fishery. In recent times, however, Krishna estuary has been a victim of anthropogenic interferences, especially in terms of its hydrology, which has been altered significantly, due to the construction of dams and barrages across river Krishna, upstream. The freshwater inflow into the system has thus become a critical factor during the larger part of the year, barring the monsoon.


The estuaries, being highly complex ecosystems due to varying salinity gradients, from freshwater to marine environment, portray diverse habitats with varied biotic communities, including the fish fauna. It is prudent therefore, to develop thorough understanding on the habitat variables and biodiversity for effective management and sustainable utilization of estuarine fisheries. The Krishna is one of the important estuaries of peninsular India, but scientific information on its ecology and fisheries is scanty (David, 1963; Sarin *et al.* 1985; Zingde, 1989).

Taking a cognizance on the information gap, CIFRI undertook a detailed investigation on its ecology and fishery, covering a stretch of 80 km, between Srikakulam (near Vijaywada) and Hamsala (sea face), over the period 2005 to 2007. The main aim of the present investigation was to understand the status of ecology, biodiversity and fish production potentiality of the estuary in the changed ecological regime for formulating appropriate fisheries management guidelines.

PHYSICAL FEATURE OF THE KRISHNA RIVER ESTUARY

The Krishna is a rain-fed river, originating from 4000-5000 ft high of Western Ghat, south of Poona. Among the human habitations on either bank of Krishna estuary, the city of Vijaywada is located near its delta on the east cost. Over the year, a large number of reservoirs have come into existence across the Krishna river system viz. Lakkvalli, Thungabhadra, Koyna and Vanivilassagar. In addition to these, a number of small reservoirs have also been constructed across its minor tributaries like Mutha, Ghata- prabha, Musi and Easi rivers. The Prakasam Barrage constructed across Krishna at Vijayawada has altered the whole gamut of ecology and fisheries of Krishna estuary (Map 1), as the bulk of the impounded water is being diverted for irrigation, allowing a little to support the estuarine habitat, especially during summer. Almost a dry stretch has become the hallmark between the barrage and the estuary during the lean season.

MAP OF RIVER KRISHNA AND ITS FLOW DOWN PRAKASAM BARRAGE SHOWING DIFFERENT SAMPALING CENTRES

ECOLOGY OF KRISHNA ESTUARY

Physico-chemical profile of Krishna Estuary

Depth

The upper estuarine stretch between Srikakulam and Nadakuduru has been found to be a stressed zone due to less availability of freshwater, resulting which 90-95% of the area becomes almost dry after the monsoon. Evidently, the upper estuarine zone indicated negligible fishery, as compared to the lower estuarine region, where water depth was always > 3 m.

Transparency

The Secchi disc transparency, indicated medium to high values throughout the period under study. The gradient zone (Nagayalanka, Pulligada, Ramuripalam) had relatively higher transparency, as compared to freshwater and marine zones, which is contrary to the observations made in Hooghly estuary (Nath, 1998). In Krishna the transparency has been maximum during winter and early summer, while it was minimum during monsoon and post-monsoon months.

Temperature

Air temperature varied between 26.5°C and 38°C, while it was 26°C to 35°C in ambient water. The mean water temperature, from 29.16°C to 31.67°C, indicating prolonged summer in this estuary. Water temperature during 2006-07 (30.02°C) was relatively higher as compared to 2005-06 (27.64°C). Thermal stratification could not be recorded in Krishna estuary, may be due to tidal impact. The thermal regime of Krishna estuary, therefore, appeared to be favourable for the growth and survivability of fish and other aquatic organisms.

Dissolved Oxygen

Dissolved oxygen content ranged from 4.8 to 8.0 mgl⁻¹ with the mean values varying between 6.16 and 7.34mgl⁻¹, Relatively low D.O. was recorded during 2006-07 (6.57 mgl⁻¹), as compared to that of 2005-06 (7.0 mgl⁻¹), coinciding with relatively high water temperature. The freshwater and gradient zones indicated relatively higher values of dissolved oxygen, compared to the lower estuary.

pН

The water reaction was slightly alkaline with pH values ranging between 7.4 and 8.5 while the mean values ranged between 7.92 and 8.18. The pH values indicated an increasing trend during the period of investigation, but no zonal variation of pH could be recorded. Comparatively, however, the freshwater zone had moderately higher pH values.

Total alkalinity

Concentration of total alkalinity ranged between 92 and 206 mgl⁻¹ with the mean values from 125.3 to 158.0 mgl⁻¹. Relatively higher values were recorded during 2006-2007 (152.7 mgl⁻¹), as compared to 05-06 (131.4 mgl⁻¹). The upper freshwater region indicated higher values, as compared to the estuarine zone. In general the total alkalinity values indicated a decreasing trend with the increase in salinity, corroborating the findings of Ray, 1981.

Free CO₂

Free CO₂ contents were generally low (Nil -5.0 mgl⁻¹), indicating the absence of any pollution load, either industrial or municipal. Free CO₂ in small concentration is considered to be favourable for adequate photosynthetic activities through the autotrophs, phytoplankton and other algae.

Sp. Conductivity

The Sp. Conductivity values indicated significant variations in different zones. In upper estuary (Srikakulam, Nadakuduru) the values ranged between 0.19 and 2.19 milli mhos/cm, while at Hamsala (near sea mouth) it varied from 19.41 and 42.1 milli mhos/cm, indicating a direct relationship with salinity.

Total dissolved salt

The TDS content (0.124-27.37 gl⁻¹) followed a similar trend, as observed in case of sp. conductivity. Relatively, higher values were recorded during 2006-2007, as compared to those during 05-06. In general sp. conductivity and TDS values were maximum during summer and minimum during monsoon months.

Salinity

Salinity fluctuated widely (0.14-35.6 gl⁻¹), depending on season and the zones. Minimum salinity was recorded at the upper estuary (Srikakulam, Nadakuduru). Ramuripalam was situated at gradient zone (4.50 gl⁻¹) while high salinity was recorded at Hamsala (Av.30.83 gl⁻¹) followed by Gollalamodha (18.4-35.6 gl⁻¹). Etimoga (10.32-35.23 gl⁻¹), Palakayatippa (2.1-34.86 gl⁻¹) and Nagayalanka (4.36-28.0 gl⁻¹). During summer the upper zone of the estuary was dry due to negligible discharge from the river resulting in higher salinity in the estuary. During monsoon salinity was reduced by freshwater discharge (0.14-19.89 gl⁻¹) and the mean salinity was near 10.0gl⁻¹. Salinity in Krishna estuary was lower during 2006-07 compared to that recorded in previous year presumably due to good monsoon.

Nitrate

Nitrate content ranged from 0.012 to 0.45 mgl⁻¹ and the mean contents ranged between 0.065 and 0.21 mgl⁻¹. Maximum content was recorded at the upper estuary (freshwater zone) while minimum content was observed at the marine zone (lower estuary), which indicated that the nutrient was allochthonous. Similar trend has also been observed by Staver *et al.* (1996) in Choptank river estuary and by Nath (1998) in Hooghly estuary.

Phosphate

Phosphate content ranged from 0.02 to 0.36 mgl⁻¹ with mean values ranging between 0.06 and 0.3 mgl⁻¹. The upper and lower estuaries generally indicated relatively higher values, which might be due to input of additional nutrients from allochthonous sources. Staver *et al.* (1996) and Nath (1998) also observed similar trend in Hooghly estuary.

Silicate

The values of silicate recorded varying from 0.7 to 13.3 mgl⁻¹ with a mean range of 1.76 to 10.0 mgl⁻¹, being maximum at the upper estuary while the minimum at the lower estuary. During summer nitrate, phosphate and silicate contents were invariably low, but increased to the maximum during monsoon and post monsoon, coinciding with the decline in salinity concentration. Sarma et al. (1993) and Nath (1998) also observed an inverse correlation between the silicate and salinity. Rabalais *et al.* (1996) observed that the decrease in salinity is a consequence of upstream phosphorus addition that stimulates freshwater diatom production and an eventual burial in freshwater sediments of silica in diatom remains, thus reducing the supply of riverine silicate to coastal waters.

Sulphate

Sulphate content ranged between 5.0 and 123.3 mgl⁻¹, while its mean values varied from 18.72 to 106.5 mgl⁻¹. Minimum content was recorded towards the upper estuary, while it was maximum at the lower estuary. A similar trend has also been recorded in case of Hooghly estuary (Nath, 1998).

Calcium and magnesium

Calcium and Magnesium are the two important nutrients essential for the enhancement of aquatic productivity. Moderately good values of Ca (19.64) and Mg (14.38 mgl⁻¹) were recorded towards the upper estuary (Srikakulam) while their maximum values were at the lower estuary, at Hamsala (Ca, 475.6 and Mg, 1282.6 mgl⁻¹). It was interesting to observe that the calcium content was higher than magnesium towards the freshwater zone, but at the gradient and marine zones magnesium content was higher than that of calcium. Similar trends have also been recorded in Hooghly estuary (Nath, 1998).

Hardness

Hardness content ranged between 60 and 8000 mgl⁻¹ with the mean contents varied from 109 to 6533.6 mgl⁻¹. Maximum sulphate, hardness, calcium and sp. conductivity were recorded at Hamsala (lower estuary) while they were the minimum at Srikakulam (upper estuary). Sulphate, hardness, calcium, magnesium and sp.conductivity were maximum during summer and minimum during monsoon season.

Physico chemical characteristics of water of Krishna estuary are shown in Table 1 and 2.

Soil characteristics of Krishna estuary

Physico-chemical features

The soil characteristics of Krishna estuary are depicted in Table 3 and 4 while the mean values have been shown in Table 4. Soil samples were collected from nine centers during summer, monsoon, post-monsoon and winter. The salient results are as under:

pН

The soil reaction was near neutral to slightly alkaline, with pH ranging from 6.32 to 8.57. The mean pH ranged between 7.45 and 7.69. In general, soil pH was lower during summer and higher during monsoon and post monsoon, indicating ingress of alkaline materials from the catchments during monsoon.

Sp. conductivity

The sp. conductivity values varied widely, from 0.081 to 17.80 millimhos/cm while the mean values varied between 0.27 and 6.58 millimhos/cm. The minimum conductivity was recorded at the upper estuary (Srikakulam and Nadakuduru) while Hamsala (6.58), Gollalamodha (5.12), Palakayatippa (5.210) and Etimoga (4.6) in løwer estuary had the higher values, relatively. In general, the centers having higher conductivity tend to be more productive. The seasonal variations of sp. conductivity values indicated relatively higher values during summer while they were the minimum during monsoon, which coincided with the observation (Nath, 1998) in Hooghly estuary.

Organic carbon

Organic carbon content ranged between 0.09 and 0.69% with the mean content varying from 0.25 to 0.42%. The organic carbon content was moderately low due to poor freshwater discharge from the catchments areas as well as from the river due to damming of rivers. The mangrove forest, which is known for the enrichment of organic matter in estuaries, has also been insignificant in Krishna Estuary. Perusal of data indicates low organic carbon during summer, which, however,

6

showed an increasing trend from monsoon onwards, indicating relatively higher ingress of organic carbon along with the monsoon waters.

Available nitrogen

Available nitrogen content ranged between 5.0 and 17.36 mg/100g soil with the mean content varying between 8.3 and 12.32 mg/100g. The status of available nitrogen content indicated that the estuary was deficient in nitrogen, as such poor in productivity, but free from any pollution load.

Total nitrogen

Total nitrogen content ranged between 0.008 and 0.0535% with the mean value varied from 0.02 to 0.04%. The total nitrogen content also indicated nitrogen deficient estuarine environment thereby poor in productivity.

Available phosphate

Available phosphate content ranged from 0.06 to 6.24 mg/100g and the mean content varied from 1.54 to 4.02-mg/100g soil. In general the lower estuarine zone appeared to have higher content than the freshwater zone. Similar trend was also recorded in Hooghly estuary (Nath, 1998).

Free calcium carbonate

Free calcium carbonate content ranged from 3.0 to 10% and the mean content varied from 6.46 to 7.83%. No significant seasonal or zonal variations were recorded in the estuary for Calcium carbonate. Thus, minimum calcium carbonate was recorded during summer and maximum during monsoon during 2006-07 while just opposite trend was found during 2005-06 presumably due to flooding of the catchments.

Texture of the soil

Clay

The bottom sediment of Krishna estuary indicated poor clay content ranging from trace to 8.0% with a mean range of 0.18 to 3.0%.

Silt

Silt content ranged from Nil to 62.54% with a mean range of 1.67 to 30.6%, being the maximum at Palakayatippa (Av. 46.6%) followed by Gollalamodha (30.6%) and Etimoga (Av. 19.55%). The other centres had lower contents (1.67-7.3%).

Sand

Sand content varied widely both seasonally and center-wise. Barring Gollalamodha and Palakayatippa, all other centers had very high sand content. The soil texture was loamy sand in general.

Factors	% Composition
Clay	Traces-8.0 (mean 0.18-3.0)
Silt	Nil-62.54 (mean 1.67-46.5)
Fine Sand	Nil-91.43 (mean 33.4-63.5)
Course sand	1.23-98.0 (mean 15.0-57.4)

In general the physico-chemical characteristics in particular and ecology as a whole of Krishna estuary appeared to depend largely on the availability of freshwater from the river and the catchments. Available data indicates that the estuary is a victim of erratic freshwater supply between the period 1989 and 2000 it received on an average 735.22 TMC (Av.735.229 TMC) of freshwater, supporting reasonably good productivity. Later on, however, it declined an all time low at 5.9-69.5 TMC (Av. 26.59 TMC) during 2001-2004, affecting the estuarine system adversely. Again during 2005 and 2006 it increased to 1213.66 and 966 TMC, respectively, improving the ecology and productivity of the estuary. Evidently, freshwater discharge in Krishna estuary is a critical factor towards the production and productivity of the system.

Primary production

Gross primary production (mgC/m²/hr) ranged between 25 and 187.5 with a mean range of 49 to 126.3. In general lower production was recorded at the upper estuary (Nadakuduru and Srikakulam), while it was maximum at the lower estuary (Hamsala and Palakayatippa).

Net primary production $(mgC/m^2/hr)$ ranged between 15 and 156.2 with a mean range of 25 to 82.6. Minimum net production was recorded at Freshwater Zone (Nadakuduru) while it was maximum at Nagayalanka in lower estuary.

Community respiration ranged between 12.5 and 131.25 mgC/m²/hr with a mean range of 28.0 to 78.95 mgC/m²/hr. The respiration values were minimum at the gradient zone, followed by upper estuary. The lower estuarine stretch, however, indicated relatively higher values.

Perusal of primary productivity data revealed less productive upper freshwater stretch while the lower estuary was highly productive.

The Net primary production was maximum during post-monsoon while gross production was high during monsoon and post monsoon, indicating the role of nutrients received through allochthonous sources being drained during monsoon months.

8

BIOTIC PRODUCTION

Plankton profile

As seen from the overall average density, plankton ranged from 249 to 503 ul⁻¹ being maximum during premonsoon and minimum in the monsoon period. Phytoplankton (69.3%) was dominant over zooplankton (30.7%). The qualitative texture of phytoplankton spectrum revealed the presence of 93 species with greater dominance of Bacillariophyceae (68.23-90.08%) followed by Dinophyceae (18.30-22.63%), Myxophyceae (3.56-6.25%), Chlorophyceae (2.89-3.11%) and Xanthophyceae (1.30-1.82%). The members of Euglenoids were also recorded at times, especially towards the upper stretch of the estuary (>1%). A total of 23 species of zooplankton were identified belonging to Cyclops (45.00-62.12%), Protozoans (16.15-23.00%), Rotifers (6.23-8.15%) and Cladocerans (3.98-5.64%). The Krishna estuary indicated insignificant variations among the biotic texture between sampling stations and seasons, barring the monsoon, which indicated homogenous distribution of communities being single ecological entity. Seasonal variation in plankton of Hooghly estuary (2005-07) is given in table 5.

Macro-benthos

Quantitative and qualitative assessment of macro-benthos of the Krishna estuary was done. As seen from the overall average (1157 nos/m²), the density of macro-benthos in Krishna estuary was low. The concentration was more in the gradient and upper zones (67%) than the marine zone (33%). Benthic population did not show any marked seasonal variation. The abundance fluctuated in a narrow range 1091-1217 nos/m² during pre-monsoon, monsoon and post-monsoon seasons. Diversity did not show any marked variation. Molluscs (87.1%) were abundant represented by Gastropods (69.2%) with the forms like *Thiara*, *Indoplanorbis*, *Lymnaea*, *Cerithidea*, *Pila*, *Telescopium*, *Bellanya*, *Gargetia*, *Pugilina*, *Columbella*, *Pythia*, *Ellobium*, *Littorina* Neritina, Nassarius, *Clithon*, *Cerithidea*, *Gyraulus etc*. and Bivalves (17.9%) like *Parreysia*, *Corbicula*, *Lamellidens* Scapharca. Doncx, *Modiolus*, *Barnia*, *Meretrix*, *Timoclea*, *Paphia etc*. Higher concentration of molluscs during monsoons poor.

The mean abundance of macro-benthos (nos/m^2) in all the three seasons at different centers of the estuary was statistically compared using analysis of variance technique. But no significant difference was observed between mean abundance of macro-benthos in pre-monsoon, monsoon and post-monsoon (p>0.05). Seasonal abundance of macro benthos is presented in Table 6

Periphyton

The periphyton diversity of Krishna estuary indicated the greater dominance of diatoms followed by blue-greens. The overall sequence of periphyton population in Krishna could be depicted as: diatoms (Bacillariophyceae) \blacktriangleright blue-greens (Cyanophyceae) \triangleright green algae (Chlorophyceae) \triangleright protozoa

(animalcules) \blacktriangleright Yellow algae (Xanthophyceae) \blacktriangleright Dinoflagellates. The density of periphyton ranged from 1250 nos/cm² to 4500 nos/cm² with relatively higher concentration towards the lower estuarine stretch. The distribution of periphytic organisms, belonging to various groups, indicated specific preference of water quality, especially the salinity concentration, for greater proliferation, as the abundance of cyanophyceae and chlorophyceae was relatively higher in the freshwater stretch whereas diatoms were the dominant contributors in the saline stretch. A total of 72 species of periphyton were recorded, among which a number of organisms recorded in the plankton assemblage of the system, also. The dominant periphytic organisms were as under: Oscillatoria, Oedogonium and Nitzschia.

Groups	Dominant species
Algae	
Bacillariophyceae	Psuedo-nitzschia serrata serrata, Gomphonema paroulum, G. constrictum, G. intricum, Achnanthes sp., B. sinensis, Chaetoceros dadayi, C. affinis, c. mitra, Rhizosolenia acicularis, Synedra nitzschioides, Thalassiosira delicatula, Guinardia sp.
Chlorophyceae	Oedogonium tenue, Tetraspora lacustris, Golenkinia radia, Schroedaria ancora, Pediastrum clatheratum, Coelastrum reticulatum, Treubaria crassipina, Tetraedron enorme, Oocystis silitaria, Chodatella chodati, Ankistrodesmus falcatus, Scenedesmus spp.
Cyanophyceae	Rhabdoderma lineare, Merispopedia elegans, Microcystis aeruginosa, Gloeocapsa sp., Anabaena spirodis, Gloeotrichia echinulatus, Oscillatoria limosa, O. princeps, Lyngbya limentica
Xanthophyceae	Ophicytium sp.
Dinophyceae	Peridinium spp., Ceratium sp., Prophacus spp.
Protozoa	Difflugia pyriformis, Centropyxis aculeate, Chilodonella sp., Tintinnid sp.

FISH AND FISHERIES

FISH FAUNA

The information on fish and fisheries of the Krishna estuary is scanty. During the present investigations, 47 fish species belonging to 30 families and 40 genera were recorded from the Krishna estuary. The fish fauna was predominated by the estuarine and marine species. The occurrence of freshwater forms was negligible. Besides, prawns (L. styliferus, M. monoceros, M. brevicornis, P. indicus, P. mondon) and crab (Scylla serrata) were also recorded from the estuary. The list of fish fauna of Krishna estuary is given below:

Family	Species
Muraenesocidae	Muraenesox bagio
Clupeidae	Hilsa ilisha
	Hilsa kelee
	Anodontostoma chacunda
	Ilisha melastoma
Chanidae	· Chanos chanos
Cyprinidae	Puntius spp
Bagridae	Mystus vittatus
Ariidae	Arius caelatus
	Arius platystomus
Hemiramphidae	Hyporhamphus limbatus
Centropomidae	Lates calcarifer
Ambassidae	Anıbassis gynınocephalus
	Chanda nama
Teraponidae	Terapon jarbua
Sillaginidae	Sillago sihama
Carangidae	Caranx ignobilis
	Chorinemus tallo
	Scomber microlepidotus
Leiognathidae	Leiognathus equulus
Lutjanidae	Lutjanus argentimaculatus
-	Lutjanus quinquelinearis
	Lutjanus Johni

Family	. Species
Gerreidae	Gerres filamentosus
	Gerreomorpha setifer
Haemulidae	Pomadasys argenteus
	Pomadasys commersonnii
Sparidae	Rhabdosargus sarba
Mullidae	Upeneus sulphureus
Drepanidae	Drepane punctatus
Scatophagidae	Scatophagus argus
Cichlidae	Etroplus suratensis
Mugilidae	Mugil cephalus
	Valamugil sunnesius
	Rhinomugil corsula
	Liza parsia
	Liza spp
Polynemidae	Polydactylus indicus
Eleotrididae	Butis butis
Trichiuridae	Trichiurus savala
Bothidae	Pseudorhombus arsius
Scombridae	Rastrelliger kanagurta
Sciaenidae	Dendrophysa russelli
	Johnius carouna
Engraulididae	Thryssa kammalensoides
Sphyraneidae	Sphyraena obtusata

FISHERIES

Regimental river water discharge from the up-stream barrage across Krishna estuary has significant impact on its salinity r, thereby its fisheries. The estuary tends to become hypersaline in nature during the larger part of the year, barring a brief monscon period, due to more of tidal ingress and less of freshwate¹. The resultant impact has been disappearance or rare presence of oligohaline as well as the freshwater species viz. carps, catfishes, murrels, featherbacks, etc. During the period under investigation the mullets like Mugil cephalus, Liza parsia and Liza

spp, followed by clupeids, perches, sciaenids, catfishes, penaeid prawns and crabs contributed to the commercial fish catch.

Major fishing activities observed restricted towards the lower part of the estuary, Nagayalanka being the main fish-landing centre. The period between November and April has been the peak fishing season in Krishna estuary while fish landing during May to mid of July could be considered as the lean season. The period between mid-July and mid-October has been the fishing holiday being the 'closed season'.

Data on annual fish catch (Source: State Fisheries Department and Fishermen Cooperative Societies), indicated a total fish production of 540 t (= 90 kg/ha) during the year 2004-05. The fishing effort and the fish catch for the year 2005-06 were estimated based on the data generated under the project, especially during the pre- and post-monsoon campaigns. The total fishing effort and CPUE were estimated at 36,000 boat-tide; 13.6 kg/boat/tide in post-monsoon and 3750 boat-tide; 1.74 kg/boat/tide in pre-monsoon, respectively. The total annual catch for the year 2005-06 was estimated at 496.1 t (= 83 kg/ha). Of which, the bulk of the catch (489.6 t) was recorded during post-monsoon while the contribution of pre-monsoon catch, in the total landing, was 6.5 t only.

The State Fisheries Department issues licenses @ Rs.75/-per year for motorized boat and Rs.8-9/-per country boat per year. The country boats were found restricted mainly to the estuarine fishing while the motorized boats found to be operated in estuary as well as in sea fishing. During 2004-05, about 884 licenses were issued, 771 (80.4%) for the country boats and 173 (19.6%) for the motorized boats. Gillnets (*Gidasavala/Eduvala/Teluvala*), dragnets (*Laguduvala*) and cast-nets (*Esuruvala*)) were the main fishing gears operated in the estuary for the commercial fishery. Hooks & lines (*Galam*), Crab-nets (*Peetavala*) and Stake-nets (*Gidasavala*) were also used, restricted to certain pockets only.

RECRUITMENT OF FISH SEED

Observations on the recruitment of fish seeds indicated that the breeding of commercially important species takes place during the monsoon season, only. The recruitment of spawn was relatively high in the upper zone (75-85 nos/net/hr) as compared to the lower zone (3-8 nos/net/hr) of the estuarine system. During the post-monsoon season the intensity of recruitment declines significantly in upper (8-19 nos/net/hr) and lower (09 nos/net/hr) estuaries. The overall abundance of mullet seeds, both during pre- and post-monsoon was estimated to be 28.3% while the remaining 71.7% was contributed by miscellaneous groups of fish and prawns.

BIOLOGY OF COMMERCIALLY IMPORTANT FISH SPECIES

LENGTH-WEIGHT RELATIONSHIP

Length-weight relationships of two commercially important mullets of the estuary were worked out as shown below:

Mugil cephalus

 $W = 0.00002 \ L^{2.8998} \\ or \\ log W = -4.6990 + 2.8998 \ log L \ (r = 0.9830) \\ Where, W = weight (g) \ and \ L = length (mm) \ of \ fish$

'b' value of M. cephalus was significantly lower (P < 0.01) than '3' indicating allometric pattern of growth

Liza parsia

 $W = 0.0000005 L^{3.5663}$ or $\log W = -6.3010 + 3.5663 \log L \ (r = 0.9645)$

'b' value of L. parsia was significantly higher (P < 0.01) than '3' also indicated allometric growth pattern

SALIENT FINDINGS

- The seasonal variation of ecology, biodiversity and production potential of Krishna estuary revealed an alarming impact of river flow.
- Upper estuary being very shallow and narrow, cannot sustain fish growth, fish breeding or migration on commercial scale.
- Sandy bottom sediment not congenial for nutrient retention or exchange, accordingly the nutrient status in the sediment indicated poor values
- The river valley modifications like Upper-Krishna Projects in Maharashtra, Karnataka and Andhra Pradesh has been found to be the main reason for dwindling freshwater discharge in Krishna estuary downstream of Prakasam Barrage.

- The seawater incursion has been found to be high, especially during high tides, covering > 90% of the tidal stretch.
- Presently, the estuary is largely tide-fed, in absence of adequate freshwater inflow with a tendency of becoming polyhaline (av. salinity >18 ppt).
- The controlled freshwater efflux besides drying up of one-third of estuarine length, towards the upper end, particularly during non-flood seasons, has increased the salinity amplitude to a considerable extent (20-35 ppt).
- Low run-off from the catchments, coupled with poor river drainage has led to inadequate
 nutrient supply, low proliferation of biotic communities and sub-normal productivity.
- The Krishna estuarine complex, one of the important coastal fisheries resources in east coast, is emerging example of freshwater water deficit system, affecting the production functions and biodiversity adversely.
- During the major part of the year the salinity amplitude has been shifted towards a hyperhaline condition, leading to colossal loss of estuarine biodiversity, including the fish fauna.
- The mullet fishery, however, remained unchanged, rather showing an increasing trend in terms of the annual fish production (about 500 t/annum).

BROAD RECOMMENDATIONS

- Restoration of minimum freshwater flow in the system from the Prakasam Barrage, especially during lean seasons to protect the estuarine characteristics thereby its fisheries and biodiversity
- The ecology and productivity of Krishna estuary may be improved by discharging at least 1300-1500 TMC of freshwater from Prakasam Barrage every year on regular monthly instalments.
- Reduction in fishing efforts by reducing the number of boats to sustainable level with complete restriction on the operation of motorized boats to protect the interest of traditional fishers.
- Making the upper estuarine zone as the protected area, especially during monsoon, for safe and healthy recruitment of fish and prawn species.

- Complete ban on the operation of small meshed disco-nets for the conservation of fish and prawn juveniles to ensure smooth recruitment and sustainable fishery.
- Conserving the recruitment and growth of mullets, the prime fish species of commercial importance, through responsible and rational fishing practices.

Reference:

APHA, AWWA and WPCF.1980. Standard methods for the examination of water and wastewater, 15th ed. Washington DC; 1134 p.

Jorenz, J.J. 1999. The response of fishes to physico chemical changes in the mangrove of the North Florida Bay. *Estuaries*, 22(2B): 500-517.

Nath D. 1998. Zonal distribution of nutrients and their bearing on primary production in Hooghly Estuary. J. Inland fish. Soc. India. 30(2): 64-74.

Piper C.S.1966. Soil and Plant Analysis. Hans Publishers Bombay. 368 p.

Rabalais N. N.Turnar R.E., Dorteh Q, Wiseman W. J. Jr. and Sengupta B.K.1996. *Estuaries* 19. (2B); 386-407.

Ray,P.1981. Impact of man on the Hooghly estuary Water pollution and management Reviews. Editor C.K.Varshnney South Asian Publishers Pvt.Ltd.New Delhi: 79 -120.

Staver L.W., Staver K.W. and Steverson J.C. 1996. Estuaries .19(2B): 342 -358.

Sarma V.V. ,Sudhakar U.and Varaprasad S.J.D.1993. Mahasagar 26(2) :105-113.

16

2007)
5-March
1200
(Apri
estuary
Krishna
[Jo (
(Range
characteristics
-chemical
Physico
Table 1:

Parameters	1	2	3	4	5	9	-	8	6
	Gollala modha	i Etimoga	Nagaya- lanka	Pulligada	Ramuri- palam Nada- kuduru	Nada- kuduru	Srika- kulam	Srika- kulam Palakaya- tippa	Hamsala
Air Temp. (°C)	24.5-34.5	24.0-34.0	24.6-34.5	24.0-35.0	25.0-36.0	26.5-34.0	25.0-30.0	270.340	14
Water Temp. (°C)	22.8-32.0	22.5-32.5	22.9-32.0	23.0-34.0	23.8-34.7	25.0-32.0	24.0-35.0	25.8-32.0	20.0-04-U
Transparency (cm) 22.5-50	22.5-50	19.0-70.0	18.5-100.0	18.0-115.0	28.0-108.0	30.0-60.0	22.0-57.0	24.0-72.0	19 0.40.0
D.O. (mgl ¹¹)	5.8-6.4	5.8-8.0	5.2-7.28	5.0-7.6	6.48-7.92	7.0-7.88	6.0-7.6	48-68	52.677
Ηq	7.4-8.4	7.6-8.4	7.5-8.4	7.4-8.4	7.5-8.4	7.8-8.5	7.6-8.4	7.5-8.4	75.84
Sp.conductivity**	18.70-26.85	17.24-26.25	10.11-23.32	4.5-15.23	0.21-11.15	0.25-2.19	0.19-1.97	2.26-28.2	1941-471
TDS ₈ /I	11.54-17.45	11.206-17.06	6.57-15.16	2.925-9.9	0.136-7.25	0.163-1.423	0.124-1.28	1.469-18.33	12.61-27.365
TA (mgi ⁻¹)	106.0-158.0	102.0-160.0	94.0-182.0	92.0-196	110.0-200.0	116.0-206.0	114.0-206.0	112.0-163.0	112.0-154.0
Free CO ₂ (mgl ⁻¹)	0.4-4.4	3.0-4.2	Nil-4.8	Nij-4.4	Nil-3.2	Nil-4.0	Nil-4.4	Trace-5.0	Nil-4.8
Chlorinity (g ^{]-1})	10.2-19.7	5.7-19.5	2.4-15.5	0.5-15.1	0.08-11.0	0.1-1.1	0.1-00.1	1.15-19.3	11.0-19 5
Salinity (gl ⁻¹)	18.44-35.6	10.32-35.23	4.36-28.0	0.93-27.3	0.17-19.9	0.21-2.02	0.14-1.84	2.105-34.86	19.885-35.23
NO ₃ (mgl ⁻¹)	0.02-0.164	0.03-0.261	0.024-0.315	0.016-0.357	0.028-0.45	0.084-0.368	0.092-0.37	0.016-0.251	0.012-0.138
Total N (mgl ⁻¹)	0.248-1.76	0.296-1.49	0.34-1.272	0.098-0.823	0.124-0.915	0.136-1.101	0.144-1.066	0.124-1.609	0.128-1 025
PO4 (mgl ⁻¹)	0.031-0.122	0.017-0.150	0.028-0.129	0.029-0.146	0.037-0.365	0.12-0.362	0.12-0.321	0.018-0.142	0.08-0.121
Sulphate (mgi ⁻¹)	24.66-115.3	80.0-107.66	32.66-102.3	16.0-95.0	5.66-91.66	16.0-43.33	2.0-39.66	70.0-117.7	88.33-123.33
Silicate (mgl- ¹)	2.1-9.322	2.2-9.793	4.7-9.260	5.7-10.0	6.1-12.9	6.7-13.3	8.1-13.3	2.0-9.332	0.7-3.16
Hardness (mgl- ⁻¹)	300.0-7800.0	150.0-7300.0	100.0-6500.0	0.0932-0.09	80.0-4700.0	70.0-300.0	60.0-200.0	200.0-7900.0	5500 0-8000 0
Ca (mgl ⁻¹)	16.3-593.2	8.016-505.0	7.214-488.9	6.413-376.75	5.61-272.5	4.809-48.09	4.008-48.1	12.825-561.1	360 77-675 75
Mg (mgl ⁻¹)	589.9-1559.3	31.2-1448.2	19.67-1266.6	17.75-1165.9	4.746-364.5	4.762-67.19	4.75-21.59	40 3-1578 5	944 85-1597 75
Gross.P.P. *	75.0024-171.8	58.33-125.0	75.0-187.5	54.17-138.9	46.0-70.0	25.0-85.0	37.5-93.5	75.0-218.7	41 668-157 R
Net.P.P.	33.3-156.2	29.17-93.7	25.0-156.25	20.8-93.7	15.5-42.0	15.0-40.0	25.0-62.0	33.3-125.0	20.0-83.3
Resp. *	30.0-75.0	10.0-45.0	25.0-66.7	35.0-112.5	15.0-47.0	12.5-56.0	20.0-75.0	12 5-131 25	25.0-131.25
Depth. (Ft)	17.0.30.0	14.0-32.0	12.0-30.0	6.0-15.0	7.0-20.0	1.0-3.0	1.0-4.0	8.0-20.0	17.0-29.0
Flow rate (ft/min) 20.0-72.0	20.0-72.0	22 0-75.0	20.0-78.0	20.0-80:0	15.0-85.0	20.0-87.0	18.0-89.0	14.0-45.0	19.0-55.0

Krishna Estuary — Ecology and Fisheries

18

Colla-modula Erinoga Nagya-tinuta Pulligoda Ramuri patrone Colla-modula Erinoga Nagya-tinuta Pulligoda Ramuri patrone Air temp. (C) 30.4 30.46 30.46 30.46 30.46 30.45 30.55 30.55 30.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 </th <th>Parameters</th> <th>1</th> <th>2</th> <th></th> <th>4</th> <th>ۍ د</th> <th>9</th> <th>7</th> <th>~</th> <th></th>	Parameters	1	2		4	ۍ د	9	7	~	
30.4 30.365 30.06 28.75 28.95 28.45 32.5 41.5 6.34 6.875 6.7865 6.34 6.875 6.7865 6.34 8.035 5.7865 19.366 15.54 8.035 19.366 15.2679 10.073 13.5655 13.2 13.263 13.24 13.5655 1.32 1.38 1 13.665 1.32 1.38 1 13.665 1.32 1.38 3.1 13.665 0.1261 0.1185 0.061 24.945 2.205 14.465 0.064 0.7315 0.261 0.1261 0.1185 0.8544 0.7193 0.064 0.064 90.8735 0.12665 6.4295 0.436 90.8735 0.0005 8.3.44 0.436 4.8665 3.5464 22.052 4.4365 90.8733 26453 23.465 1.120.89 67.699<	Montantin of the second se	Golla-modha	Etimoga	Nagaya-lanka	Pulligada	Ramuripalam -	Nadaku-duri	Srikaku-lam	Palakava-tinna	Hamsala
2875 28.45 29.08 29.37 28.15 28.15 28.45 29.37 28.175 28.175 28.915 28.915 32.5 41.5 6.44 76.165 69.19 43.25 7.34 7.27 7 6.16 8.035 6.2865 6.845 7.34 7.27 7 6.16 7.34 7.27 7 6.16 7.34 7.27 7 6.16 7.345 8.175 8.165 7.345 7.345 7.345 7.345 7.345 7.345 7.345 7.345 7.345 7.345 7.345 7.345 8.175 8.165 8.155 8.156 8.175 8.165 7.345 <td>Air temp. (°C)</td> <td>30.4</td> <td>30.365</td> <td>30.08</td> <td>30.6</td> <td>30.84</td> <td>29.75</td> <td>2015</td> <td>30.5</td> <td>2004</td>	Air temp. (°C)	30.4	30.365	30.08	30.6	30.84	29.75	2015	30.5	2004
325 415 644 76.165 69.19 3215 779 2915 2935 8.035 8.13 8.05 8.04 8.66 6.845 7.34 7.27 7 6.16 8.035 8.13 8.05 8.04 8.05 8.04 8.05 8.17 8.165 734 737 7 6.16 8.135 12.348 15.54 10768 2.94 0.901 1.04 19.35 13565 1124 118.33 147.165 122.34 138 155 133.485 135665 1124 118.33 147.165 122.34 1138 125665 0.7665 0.25786 0.1766 277 13866 0.1261 0.1186 0.1468 0.1468 0.1765 0.2298 0.7755 0.1286 0.1126 0.1795 0.7965 0.1796 0.7755 0.1286 0.1166 0.7755 0.1266 <	W.temp. (°C)	28.75	28.95	28.45	29.08	7F 94	36 135	105	1.00	CI 6:67
6875 6.786 6.68 6.89 7.31 7.22 3.93 3.55 21125 19.368 15.54 10768 2.34 7.27 7 6.16 21125 19.368 15.54 10768 2.34 7.27 7 6.16 21125 19.368 15.54 10768 2.94 0.901 1.04 19.35 13756 112.4 138.33 147.165 15.2.34 158 155 133.485 13.86 112.4 138.33 147.165 15.2.34 158 155 133.485 13.86 0.1073 6.9966 1.90775 0.7655 0.6765 12.5785 13.86 12.61 148.6 0.2666 2.4785 0.103 0.756 0.1266 24.965 0.1261 0.1466 0.24785 0.1765 0.2966 0.1755 0.984 0.8753 0.7933 0.7933 0.7115 0.7415 0.5566 0.1266 0.1266 0.1266 <t< td=""><td>Transparency (cm)</td><td>32.5</td><td>41.5</td><td>63.4</td><td>76 165</td><td>60.10</td><td>19.95</td><td></td><td>C16:07</td><td>CQQ727</td></t<>	Transparency (cm)	32.5	41.5	63.4	76 165	60.10	19.95		C16:07	CQQ727
8.05 8.1 0.05 0.04 <th0< td=""><td>D.O. (mgl⁻¹)</td><td>6.875</td><td>6 7885</td><td>668</td><td>2 045</td><td>61760</td><td>C7 C7</td><td>5.75</td><td>38.5</td><td>28.83</td></th0<>	D.O. (mgl ⁻¹)	6.875	6 7885	668	2 045	61760	C7 C7	5.75	38.5	28.83
a.m. b.l. 8.04 8.05 8.175 8.165 7.915 2.1125 19.368 15.54 10.073 5.9986 1.90775 0.7665 12.5785 1375.665 123 112.4 112.4 112.4 19.36 12.53865 12.53865 12.5785 13.84 12.5785 13.84 12.5785 13.84 12.5785 13.84 12.5785 13.84 12.5785 13.84 12.5785 13.84 12.5785 13.8455 12.5785 13.8455 12.5785 13.8455 12.5785 13.8455 12.5785 13.8455 12.5785 13.8455 12.566 2.77 19.9 17.66 2.75 13.8 12.218 8.1 5.6665 2.3475 0.1126 0.7155 0.1256 0.1256 0.1256 0.1126 0.1126 24.945 0.7115 0.74115 0.5665 0.5845 0.1256 0.1256 0.1256 0.1256 0.1266 0.1128 0.1066 0.1266 0.1256 0.2166 0.1256	, o , He	9.00		00:00	CH0:0	4 5.7	7.27	4	6.16	6.255
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ud i	6:039	8.1	8.05	8.04	8.05	8.175	8.165	7.915	8.05
x 13.735 12.8879 10.1073 6.9966 1.90775 0.7655 0.2565 12.5785 135.665 132.4 138.33 147.165 152.34 156 125 133.435 13.8665 112.4 138.33 147.165 152.34 156 12.5785 13.8665 12.218 8.1 5.6665 2.4785 0.6 0.4605 13.393 24.945 0.1261 0.1465 0.12625 4.56465 2.4785 0.1265 0.1129 0.8546 0.7193 0.7115 0.1265 0.4145 0.1265 0.1265 0.1265 0.7115 0.1795 0.899 0.8545 0.7193 0.7115 0.1795 0.2946 0.1126 0.7755 0.899 0.8545 0.7933 0.7915 0.7415 0.5565 0.5845 0.7755 0.899 0.8546 5.1665 6.4795 8.055 0.2316 0.1765 0.7755 0.8546 5.1665 0.5495 1715	Sp.conductivity**	21.125	19.368	15.54	10768	2.94	106:0	1.04	19.35	25.42
135.665 132.4 138.33 147.165 152.4 138 155 133.835 1.9665 1.7 2.233 1.468 1.7 1.9 1.765 2.7 1.38 12.218 8.1 5.6665 2.4785 0.6 0.4605 13.393 1.38 12.218 8.1 5.6665 2.4785 0.6 0.4605 13.593 0.0885 0.1251 0.1155 0.1465 0.1285 0.1283 0.1128 0.1128 0.0885 0.7193 0.7115 0.1465 0.1785 0.2944 0.7155 0.089 0.8595 100.05 83.44 68.165 9.7115 0.0793 9.846 4.2665 4.896 5.1665 6.4295 8.0560 23.335 1.877 01.66 4.8965 5.1665 6.4295 8.0560 23.335 1.877 01.66 4.8965 3.64605 23.355 1.677 0.999 9.86 23.246 4.8965 9.7115<	TDS g/l.micromhos	13.735	12.5879	10.1073	6.9986	1.90775	0.7685	0.6765	12.5785	16 517
1366 1.7 2233 1.46 1.7 1.9 1.76 2.7 13.8 1.2.218 8.1 5.6665 2.4785 0.6 0.4605 13.593 24.945 2.205 14.45 10.2622 4.5045 1.112 0.81 24.59 24.945 2.205 14.45 10.2622 4.5045 1.112 0.81 24.56 0.88548 0.7193 0.7115 0.24785 0.2045 0.2128 0.7355 0.87548 0.7193 0.7115 0.74115 0.5655 0.5845 0.5233 0.7755 0.089 0.77155 0.2094 0.044 0.0445 0.17985 0.211 0.17755 0.089 90.8745 5.1666 5.1666 2.3.335 18.72 101.66 42.65 416.67 365.63 36.6605 2.3.335 18.72 101.66 42.65 416.67 36.423 1715 101.033 167.5 101.66 42.65 416.67 <	TA (mgl ^{.1})	135.665	132.4	138.33	147.165	152.34	158	155	133 835	175.22
13.8 12.218 8.1 5.666 2.478 0.6 0.465 13.9 24.945 22.05 14.45 10.2622 4.5945 0.16 0.465 13.56 24.945 22.05 14.45 10.2622 4.5945 0.112 0.81 24.56 0.0885 0.1251 0.1155 0.1468 0.1785 0.2066 0.2335 0.128 0.1755 0.089 0.08735 0.2394 0.064 0.0945 0.17965 0.2335 0.17755 0.089 0.8873 0.064 0.945 0.17985 0.211 0.17755 0.089 90.8295 10005 83.44 68.165 $3.5.355$ 18.72 101.66 436675 54.6605 53.355 18.72 101.66 $4.26.55$ 4316072 289.33 1715 101023 9.816 $4.26.55$ 101.66 4316072 289.33 1779 10733	Free CO ₂ (mg ¹⁻¹)	1.9665	1.7	2.233	1.468	1.7	14	1 765	16	1 1000
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Chlorinity (gl ⁻¹)	13.8	12.218	8.1	5.6665	2.4785	96	0.4206	11	C040-1
0.0685 0.1261 0.1185 0.1464 0.1785 0.2045 0.2046 0.1286 0.8548 0.7193 0.7115 0.74115 0.5655 0.2845 0.2333 0.7755 0.07315 0.2994 0.064 0.9445 0.17965 0.2333 0.7755 0.089 9.07235 0.0945 0.17965 0.74115 0.5665 0.2333 0.7755 0.089 9.08295 100.05 83.44 68.165 36.6605 23.335 18.72 101.66 4.896 5.1665 6.4295 8.055 9.7115 10.029 9.46 4.2655 4.896 5.1665 6.4295 8.055 9.715 10.029 9.466.67 4.2655 4.6667 780 177.9 196.729 197.5 109.9 4.666.67 96.75 84.54 120.79 150.70 77.99 23.246 134.72 1 96.75 84.54 120.89 150.79 195.74 23.246 9.877	Salinity. (gl ⁻¹)	24.945	22.05	14.65	10.2622	4.5045	1117	0.81	040-01 24 EX	c00./1
0.8548 0.7193 0.7115 0.74115 0.565 0.5845 0.2333 0.7755 0.094 0.07315 0.2994 0.064 0.0945 0.17985 0.2333 0.7755 0.893 9.08255 100.05 83.44 68.165 36.6605 23.335 18.72 101.66 4.896 5.1665 6.4295 8.165 9.7115 10.029 9.846 4.2655 4.896 5.1665 6.4295 8.165 9.7115 10.029 9.846 4.2655 4.896 5.1665 6.4295 8.165 9.7115 10.029 9.846 4.2655 4.6667 284.32 1731 19.023 167.59 199 466.67 96.75 84.54 126.701 77.89 23.246 13.472 1 96.755 84.54 126.704 56.74 32.179 23.246 9.877 33.217 96.755 84.51 126.79 195.74 26.23 34.376 34.275 13.477	NO ₃ (mgl ⁻¹)	0.0885	0.1261	0.1185	0.1468	0.1785	0.2045	0 20665	9011-0	679'NC
0.07315 0.2994 0.064 0.0945 0.17965 0.01755 0.0915 9.8205 100.05 83.44 68.165 36.6605 23.335 18.72 101.66 4.896 5.1665 6.4295 8.055 9.7115 10.029 9.846 4.2665 4.896 5.1665 6.4295 8.055 9.7115 10.029 9.846 4.2665 4.896 5.1665 6.4295 8.055 9.7115 10.029 9.846 4.2665 4.806 283.33 1715 101.033 167.5 109 466.67 346.022 283.232 241.567 180.70 77.89 232.16 19.465 353.17 346.022 283.232 241.567 53.177 196.77 26.23 14.3766 987.7 96.7599 54.644 82.255 56.64 31.252 241.456 38.8 32 177 1 13.472 1 98.756 35.75 448 25.25 46	Total N (mgl ^{-t})	0.8548	0.7193	0.7115	0.74115	0.5655	0.5845	0.6283	0.1120	040000
90.8295 100.05 83.44 68.165 5.665 0.4329 88.44 6.165 0.4329 8.055 0.4329 10.166 4.8% 5.1665 6.4329 8.055 9.715 100.29 9.472 101.66 4.8% 5.1665 6.43295 8.075 9.175 100.29 9.484 4.2665 346.022 283.32 211.67 150.701 77.89 23.246 19.6392 353.217 902 780 483.532 321.179 195.74 26.252 14.3766 98.77 902 780 483.532 321.179 195.74 26.252 14.3766 98.77 902 780 483.53 321.179 195.74 26.252 14.3766 98.77 97.5 84.54 120.89 105.694 50 49 60 134.72 1 96.75 84.54 120.694 56 31 25 31 64.92 67.665 35.75 44.8565	PO4 (mg/ ¹)	0.07315	0.2994	0.064	0.0945	0.17985	110.0	0.17755	10000	01010
4.8% 5.16% 6.4.1 0.010 3.0.000 2.3.55 18.72 101.66 4316.67 3958.33 2155 9.7115 100.29 9.846 4.2655 346.022 287.32 281.33 1155 100.33 167.5 109 466.67 346.022 287.32 241.667 150.701 77.89 23.246 9.846 4.2653 346.022 287.32 241.667 150.701 77.89 23.246 9.846.7 4.66.67 902 780 483.532 321.179 195.74 25.252 14.376.6 98.77 1 2 3 3	Sulphate(mgl ⁻¹)	90.8295	100.05	83 44	571 89	207776	117-0	60//1-0	680'0	0.0876
4.0% 5.1% 0.4295 8.0% 9.7115 10.029 9.846 4.2655 346.072 3954.33 263.33 1715 100.033 167.5 109 466.67 346.072 3954.33 263.33 1715 1010.33 167.5 109 466.67 346.072 780 483.53 32.17 19.574 25.246 19.6892 35.17 902 780 483.53 32.17 19.574 26.246 196.892 35.17 1 902 780 483.53 32.17 19.574 26.246 19.476 98.77 1 902 54.644 82.055 36.04 50 49 60 13.472 1 96.755 84.54 120.89 156.04 50 32 24 36.92 19.87 19.28 36.93 31 22 38.95 13.475 1 37.95 19.88 19.28 28 28 28 30	Silicate (mal-h	1 002	1 1 5 5 1		001-00	2000.06	23.335	18.72	101.66	106.5
4316.67 39548.33 1715 1010.33 167.5 109 4466.67 346.072 2873.23 271.667 156.710 77.89 233.246 19.6392 352.17 346.072 2873.23 211.667 156.701 77.89 233.246 19.6392 352.17 942 780 483.332 321.179 195.74 26.222 14.3706 908.7 948.775 54.644 82.056 166.044 50 19.43 66.92 134.72 1 67.699 54.644 82.055 56 31 25 31 66.92 19.83 19.248 18.86 58.88 28 31 26.92 19.83 19.248 18 10.5015 11.02 1 1 26.455 34.185 28.55 28.665 34.25 40.415 24.33 32.435 35.665 34.185 28.5 28.665 34.25 40.415 24.33 *unilimbos/cm - - - - - 24.23 24.33	1. Guilt and	4.8%	5.1665	6.4295	8.055	9.7115	10.029	9.846	4.2635	1.7598
36.022 283.232 241.667 [50.70] 77.89 23.246 [9.692] 352.17 902 780 443.532 321.179 195.74 26.552 14.3706 908.7 96.775 84.54 120.89 105.094 50 49 60 134.72 1 96.775 84.54 120.89 105.094 50 49 60 134.72 1 67.699 54.684 82.0255 56 31 25 31 68.92 46.665 35.75 44.8565 58.88 28 30 32 78.955 19.83 19.248 18 10.5015 11.02 1 1 13.7495 32.455 35.665 34.1165 28.5 28.665 34.25 40.415 24.33 "millimbus/cm 'millimbus/cm 24.33 24.35 24.33 24.33	Hardness (mgl ⁻¹)	4316.67	3958.33	2683.33	1715	1010.33	167.5	601	4666.67	6533.33
902 780 483.532 321.179 195.74 26.252 14.3766 908.7 98.775 84.54 120.89 105.094 50 49 60 134.72 1 96.775 84.54 120.89 105.094 50 49 60 134.72 1 67.499 54.664 82.625 56 31 25 31 64.92 46.665 35.75 44.8665 58.88 28 30 32 78.965 19.83 19.248 18 10.5015 11.02 1 1 13.7465 32.455 35.665 34.1165 28.5 28.665 34.25 40.415 24.33 "millimbus/cm ''''''''''''''''''''''''''''''''''''	Ca (mg ^{1 '})	346.022	283.232	241.687	150.701	77.89	23.246	19.6392	352.17	475.616
98.775 84.54 120.89 105.094 50 49 60 134.72 1 67.699 54.684 82.6255 56 31 25 31 66.92 46.665 35.75 44.8565 58.88 28 30 32 78.955 19.83 19.248 18 10.5015 11.02 1 1 13.7485 32.855 35.665 34.4185 28.5 28.666 34.25 40.415 24.33 *nillimbus/cm	Mg (mgl 1)	902	780	483.532	321.179	195.74	26.252	14.3766	908.7	1282.63
67.699 54.664 82.6255 56 31 25 31 68.92 46.665 35.75 44.8565 58.88 28 30 32 78.955 19.83 19.248 18 10.5015 11.02 1 1 13.7455 32.835 35.665 34.185 28.5 28.665 34.25 40.415 24.33 *nillinhvs/cm	Gross PP [*]	98.775	84.54	120.89	105.094	20	46	60	134 77	176 2715
46.665 35.75 44.8565 58.88 28 30 32 78.955 19.83 19.248 18 10.5015 11.02 1 1 37455 32.835 35.665 34.4185 28.5 28.665 34.25 40.415 24.33 "onllimbus/cm "onllimbus/cm "onllimbus/cm 24.33 24.33 24.33	Net PP*	669.79	54:684	82.6255	ß	31	ž	5	10.03	C170-071
19.83 19.248 18 10.5015 11.02 1 1 13.7485 32.835 35.665 34.4185 28.5 28.665 34.25 40.415 24.33	Resp.*	46.665	35.75	44.8565	58.88	8	5	5 8	76.007	/70-64
32.835 35.665 34.41.85 28.5 28.665 34.25 40.415 24.33 ""nitliimbus/cm	Depth (ft)	19.83	19.248	31	10 5015	11 00	i -	ł -	002.07	97.50
"millimbes/cm	Flow rate (ft/min)	32,835	35 665	24,11.85	3 8 6	20.11		-	CX57.61	20.835
				COLLEC	C.07 .	CU0.97	34.22	40.415	24.33	26.335
	Mk(/M'/hr	**millimhos/cm								

Krishna Estuary - Ecology and Fisheries

	anne 2006) an Ansina canary (April 2005 - March 2006)			19c) of 1011	Ipmica pillic	y (April 21	ND - March	1 2006)	
Parameters	-	2	3	•	5	و	-		-
	Gollalamodha	t Etimoga	Nagyalanka	Puligada	Ramt. palam	Nadakuduru		Srikakulam Palakanatinaa	
pH	6.45-8.22	6.32-8.26	6.42-8.46	7.06-8.57	7 00-8 33	7.01 8.74			
Sp. conductivity (millimhos/cm)	0.41-16.25	0.49-15.67	0.16-12.36	0.149-4.05	0.132-3.01	0.084-0.22	0.081-1.03	6.31-8.33 0.47-16.43	6.34-8.49 1.07-17.80
Total Nitrogen (%)	0.02-0.039	0.019-0.042	0.011-0.029	0.017-0.038	0.028-0.053	0.018.0.051	0000 2000		
Available Nitrogen (mg/100g)	8.4-15.68	9.52-14.56	5.0-14.56	7.28-12.88	10.08-13.44	7.84.17.36	6.72-10.08	8.4-12.32	0.008-0.039 5.04-11.2
Available P ₂ O ₅ (mg/100g)	1.76-5.68	0.62-6.24	0.06-3.6	0.38-5.84	1.0-4.76	1.466-5.94	0.18-3.36	1.82-5.76	0.36-3.04
Organic carbon (%)	0.27-0.69	0.15-0.36	0.12-0.30	0.21-0.42	270760	0.74.0 54			
Free CaCO ₃ (%)	4.5-10.0	4.0-10.0	6.0-8.5	3.5.8.0	45.975	52.27		0.18-0.6	0.09-0.51
Course sand (%)	1.23-74.0	2.0-75	2.94-98.0	19.0-97.0	10.34-09.0	10.77.0.01	27.1.0.0	9/.9-07-0	3.0-10.0
Fine sand (%)	0'29-1!N	Nil-91.43	Nil-79.51	Nil-58.94	Nil-81 43	72.00.75.0	90°60-1700	0/-07-7	15.31-48.37
Silt (%)	21.07-48.06	6.33-44.0	Nil-32.62	Nil-3.0	011-01	0.01 EN	079-01-10	88.61-IN	Nil 84.69
Clay (%)	0.32-4.0	0.02-6.0	Nil-1.0	Nil-2.0	0.01-2.0	Trace-2	NI-10	0.75.8.0	Nil-4.0
C/N	9.231-16.0714	8.5714-10.714	10.909-11.379	9.231-16.0714 8.5714-10.714 10.909-11.379 11.0526-12.353 8.57-16.1538	8.57-16.1538	10.589-1333	11.786-12.0	11.471-13.636	11.25-13.769

- 00
Ę
an
Ę
02
1200
pril
Ś
È.
tue
es
na
lsi
Ŷ
0
86
(an
5
ti c
iris
Ę
ara
£
1
<u>ده</u>
63
Į.
La

(April 2005-March 2007)
irishna estuary (
(Mean) of K
characteristics
Table 4: Soil

Parameters	-	2	e	4	ŝ	ę	7	•	•
	Golfala-modha	Etimoga	Nagaya lanka	Pulligada		Nadaku duru	Srikakulam	Ramuripalam Nadaku duru Srikakulam Palakayatippa	Hamsala
H	75	7.45	7.52	7.69	7.615	7.6125	7.47	7.573	7.525
Pri Sp.Conductivity (millimhos/cm)	5.12	4.637	3.266	1.7265	0.8765	0.2655	0.374	5.208	6.58
Total Nitrogen (%)	0.029	0.028	0.02	0.024	0.04	0.0345	0.0265	0.031	0.024
Available N (mg/100g)	11.76	11.67	9.42	8.6335	11.385	12.32	8.305	10.45	7.955
Available P ₂ O ₅ (mo/100e)	3.25	3.7735	1.8935	2.8165	2.785	3.2165	1.54	4.0165	1.97
Oroanic carbon (%)	0.41	0.31	0.2515	0.2875	0.42	0.42	0.2725	0.36	0.32
Error (a(O, (%)		7.835	6.83	6.915	6.835	6.875	6.458	7.375	6.498
Course Sand (%)	15.045	16.98	46.68	57.4075	31.445	41	50.725	15.186	4
Fine Sand (%)	52.995	63.494	46.4855	40.35	60.6565	53.618	46.53	33.414	58.66
Silt (%)	30.597	19.55	6.9	2.43	7.293	3.79	3.155	46.55	1.666
("lav (%)	1.3625	1.56	0.4065	0.51	0.5875	0.666	0.1765	3.0466	0.333

(2005-07)
estuary
Krishna
n of
ankto
in pl
variation
Seasonal
Table 5 :

		2005-06				
Sites	-				2006-07	
	LIC-MON8000	Monsoon	Post-monsoon	Pre-monsoon	Monsoon	Post-monsoon
Collalamodha	P= 388	P= 208	P= 436	P= 186	P= 240	D- 471
	S= %	Z= 40	Z= 88	Z= 116	7 = 140	2- 00
	T= 484	T= 248	T= 524	T= 302	T= 380	T=500
Elimoga	P= 466	P= 140	P= 200	P= 162	P= 108	B- 152
	Z= 131	Z= 60	Z= 80	Z= 62	Z= 56	751 = 1
	T= 597	T= 200	T= 280	T= 224	T=164	26 = 2 T- 244
Nagayalanka	P= 292	P=198	P=76	P= 236	P= 480	H-2-1
	Z= 192	Z= 48	Z= 108	Z= 60	Z= 198	2-106
	T= 484	T= 246	T= 184	T= 296	T= 678	T= 317
Puligadda	P= 358	P= 232	P= 260	P= 92T= 168	P= 204	P-104
	Z= 72	Z= 32	Z= 92	Z=76	Z= 142	7= 40
	T= 430	T= 264	T= 352	T= 168	T= 346	T= 144
Ramuripalam	P= 468	P= 192	P= 152	P=306	P= 2NA	
	Z=112	Z= 80	Z= 40	Z= 84	7= 188	-2- 40
	T= 580	T= 272	T= 192	T= 390	T= 392	2= 40 T= 104
Nadakuduru	SN	P= 218	P= 298	SN	P= 176	
		Z= 50	Z= 128		2= 2	ur -2
		T= 268	T= 426		T= 232	C- 72 T- 300
Srikakulam	SN	P= 228	P= 148	P= 156	P= 204	P- 304
_		Z= 88	Z= 162	Z= 66	Z= 294	Z= 56
D-1-1		T=316	T= 310	T= 222	T= 498	T= 260
raiakayatippa	P= 324	P= 228	P= 94	P=112	P= 158	P= 249
	Z= 88	Z= 72	Z= 220	Z= 72	Z= 110	Z= 152
	I = 412	T= 300	T= 314	T= 184	T= 268	T= 401
Hamsala	P= 436	P= Nil	P= 156	P= 140	P= 140	P= 196
	Z= 100	Z= 124	Z= 138	Z= %	Z= 132	7=138
	T= 536	T=124	T= 294	T= 236	T= 272	T= 334
	l = J	hytoplankton; Z = .	P = Phytoplankton; Z = Zooplankton; T = Total: NS = Not samnled	ul: NS = Not sampled		
A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO						

Krishna Estuary — Ecology and Fisheries

21

Centres	Season	Gastropods	Gastropods	Bivalves	Bivalves	Annelids	Annelids	Crab	Crab	Miscellaneous	Miscellaneous
		2005-06	2006-07	2005-06	2006-07	2005-06	2006-07	2005-06	2006-07	2005-06	2006-07
		nos/m	nos/m	nos/m	nos/m	nos/m	nos/m	nos/m	nos/m	nos/m	1000-07
Gollalamoda	s	1043	522	347	87	Nil	43	Nil	Nil	Nil	
	м	174	5739	43	348	Nil	Nil	Nil	Nil	Nil	87
	w	1478	1609	130	522	304	130	Nil	Nil	174	Nil
Etimoga	5	130	478	130	87	Nil	217	Nil	Nil	Nil	Nil
	м	435	1348	87	261	Nil	Nil	Nil	Nil	Nil	Nil
	w	261	1130	87	304	174	130	Nil	Nil	87	Nil
Nagayalanka	5	782	261	Nil	87	Nil	Nil	Nil	Nil	6/ Nil	87
	М.	435	174	87	87	Nil	Nil	Nil	Nil	Nil	130
	w	Nil	1087	43	87	87	87	Nil	Nil	174	Nil
Puligadda	5	9260	391	43	43	Nil	Nil	Nil	Nil	1/4 Nil	43
	м	130	1043	·87	87	Nil	Nil	Nil	Nil v	Nil	87
	W	435	391	Nil	87	43	130	Nil	Nil	304	Nil
Ramuripalam	S	391	304	130	43	Nil	87	Nil	Nil		87
	М	783	1304	217	435	Nil	Nil	Nil	Nil	Nil	130
	w	130	1304	304	174	217	217	Nil	Nil	Nil	Nil
Nadakuduru	S	Nil	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.		43
	М	391	1522	261	130	Nil	Nil	Nil	Nil	N.S.	N.S.
	w	1043	1043	43	130	130	261	Nil	Nil	Nil 87	Nil
Srikakulam	S	N.S.	217	N.S.	87	N.S.	Nit	N.S.	Nil	87 N.S.	87
	м	174	2609	87	652	Nil	Nil	Nil	Nil		130
	w	304	913	Nil	130	Nil	174	Nil	Nil	Nil 391	Nil
Palakayatippa	s	173	348	304	Nil	Nil	130	Nil	87		130
	М	478	522	174	869	Nil	Nil	Nil	- 8/ Nil	Nil	87
	w	391	478	696	261	130	Nil	Nil		Nil	Nil
Hamsala 1	S	43	Nil	347	87	Nil	Nil	Nil	Nil	130	87
	м	Nil	Nil	522	43	Nil	Nil	Nil	Nil	Nil .	87
	w	Nil	Nil	130	217	Nil	Nil	Nil	Nil Nil	Nil 87	174

Table 6 : Seasonal abundance of macro-benthos in Krishna estuary during 2005-2007

S-Summer M-Monsoon W-Winter



Figure 1: Extreme control of river discharge through Prakasam Barrage during summer

Figure 2: Monsoon release of river discharge during high flood

Figure 3: Natural and cultivated vegetation downstream of Barrage during monsoon season

Figure 4: Revived river continuity during monsoon

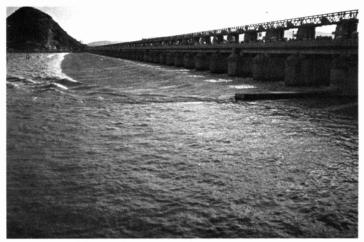


Figure 5: Estuarine habitat extending upstream up to the Barrage

Figure 6: Potential freshwater fishing zone below the Barrage

Figure 7: Sandbars hindering exchange of the estuarine tides and biotic communities

Figure 8: Hydro biological analyses of the estuary

Figure 9: Estuarine submergence in extreme flood condition

Figure 10: Fishers' displacement during extreme flood condition

Figure 11: Disrupted fishing activity due to extreme flood

Figure 12: Untoward inundation of estuarine habitats and peripheral habitations

Figure 13: Shore seine fishing in lower estuary

Figure 14: Cast net fishing in shallow margin of the estuary

Figure 15: Productivity studies in the estuary

Figure 16: Sample collection for biodiversity analyses

Figure 17: Benthic collection from the sea mouth

Figure 18: Benthic collection from the sea mouth

Figure 19: Sampling for recruitment assessment

Figure 20: Fishers displaying commonly diploid net

Figure 21: Mullets the major haul from the estuary

Figure 22: Mullet catch for retailing

Figure 23: Single haul of mullets

Figure 24: Mud crabs packed and ready for export

